A KNN Improved Art Network Approach for Handwritten Character Recognition under Noise

نویسندگان

  • Anil Saroliya
  • Varun Sharma
چکیده

One of the major application of Image processing is the character recognition. Character recognition is effective to convert the image character to text. This recognition process is more challenging in case of noisy or disturb image. In this work, a hybrid approach is suggested to perform this recognition effectively in case of disturbed noise image. The work is divided in three main stages. In first stage, the image improvement is performed by using denoising algorithm. In second stage, the image feature extraction is done to identify the character ROI and the feature points. This feature extraction is defined using KNN approach. At the final stage, Art network is applied to perform the image classification and recognition under effective vigilance ratio. The obtained results from system show the effective recognition rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

On the Performance of Devnagari Handwritten Character Recognition

This paper presents the offline handwritten character recognition for Devnagari, a major script of India. The main objective of this work is to develop a handwritten dataset (CPAR-2012) for Devnagari character and further develop a character recognition scheme for benchmark study. The present dataset is a new development in Devnagari optical document recognition. The dataset includes 78,400 sam...

متن کامل

Printed and Handwritten Character &Number Recognition of Devanagari Script using SVM and KNN

Recognition of Devanagari scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character. In this paper we have compared SVM and KNN on handwritten as well as on printed character and numerical databa...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

An Improved Handwritten Tamil Character Recognition System using Octal Graph

Problem Statement: Handwriting recognition has attracted voluminous research in recent times. The segmentation and recognition of the characters from handwritten scripts incorporates considerable overhead. Almost all the existing handwritten character recognition techniques use neural network approach, which requires lot of preprocessing and hence accomplishing these problems using neural netwo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014